
Energy current density correlation function. II. Thermal conductivity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 6193

(http://iopscience.iop.org/0953-8984/1/35/018)

Download details:

IP Address: 171.66.16.93

The article was downloaded on 10/05/2010 at 18:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/35
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter l(1989) 6193-6202. Printed in the UK 

Energy current density correlation function: 
11. Thermal conductivity 

K Tankeshwart, K N Pathakt and S Ranganathant 
t Department of Physics, Panjab University, Chandigarh-160014, India 
$ Department of Mathematics and Computer Science, Royal Military College of Canada, 
Kingston, Ontario K7K 5L0, Canada 

Received 25 July 1988 

Abstract. Expressions for the energy current density correlation function and the thermal 
conductivity have been derived using a continued-fraction representation of correlation 
function. A secant hyperbolic, a Gaussian and an exponential form of the memory function 
have been used. The parameters appearing in the memory function are determined from the 
zeroth-, second- and fourth-frequency sum rules of the energy current density correlation 
function. For the time dependence of the energy current density correlation function and 
the thermal conductivity, the results obtained for the Lennard-Jones fluids, have been 
compared with recent computer simulation data. Overall good agreement has been obtained 
over a wide range of densities and a wide range of temperatures. 

1. Introduction 

One of the most successful statistical mechanical theories of dynamical and transport 
properties of fluids is due to Boltzmann. For dilute gases the linearised Boltzmann 
equation provides a very good description of dynamical and transport phenomena. The 
Boltzmann equation does not account for the strong inter-particle correlations in dense 
media. For such dense fluids, where imperfect gas behaviour cannot be ignored, a more 
general kinetic equation is required. For hard-sphere fluids, Enskog extended the theory 
including the excluded volume effects. From comparison with computer simulation 
results for hard-sphere fluids, the Enskog theory has been found to be valid up to quite 
high densities (twice the critical density of fluids). Systematic generalisations of the 
Boltzmann equation have been studied recently. However, it has been possible to solve 
such an equation only for hard-sphere fluids (Boon and Yip 1980, Yip 1979). For realistic 
fluids there is no tractable kinetic equation which can readily be solved to predict the 
transport properties. 

The other theoretical approach for calculating the transport coefficients is through 
the Green-Kubo formalism. Here the transport coefficients are related to the time 
integrals of the time correlation functions (TCFS) of appropriate fluxes. The TCFS are 
calculated using the Mori-Zwanzig formalism which provides the continued-fraction 
representation for the TCF in terms of the memory function (MF). The MF can be obtained 
using either a microscopic approach or some phenomenological arguments. Using this 
approach, we have calculated the diffusion coefficients (Tankeshwar et a1 1987) and the 

0953-8984/89/356193 + 10 $02.50 @ 1989 IOP Publishing Ltd 6193 



6194 K Tankeshwar et a1 

shear viscosity (Tankeshwar et a1 1988) of Lennard-Jones (LJ) fluids in our earlier work. 
In this paper, we calculate the thermal conductivity of the LJ fluids. Recently, exhaustive 
molecular dynamics (MD) data on the thermal conductivity of the LJ system have been 
reported (Heyes 1984, Vogelsang et a1 1987) over a wide range of densities and a wide 
range of temperatures. The availability of these data has also been one of the motivating 
factors for undertaking the present work. It should be noted that very little theoretical 
work on the thermal conductivity and the energy current density (ECD) correlation 
function of LJ fluids has been done so far. 

In the preceding paper, we have derived the expressions for the zeroth-, second- and 
fourth-frequency sum rules of the ECD correlation function which involve only the static 
correlation function and the inter-atomic potential. In this paper, the numerical results 
for these sum rules and the phenomenological forms for the MF have been used to study 
the time evolution of ECD correlation function and the thermal conductivity of the LJ 
fluids over a wide range of densities and a wide range of temperatures. The results for 
the ECD correlation function have been compared with the very recent MD data of 
Vogelsang et a1 (1987) at the triple point. On the other hand, the results obtained for the 
thermal conductivity are compared with the MD data of Heyes (1984). The predicted 
results are found to be in reasonably good agreement with computer simulation data. 

In 5 2, we obtain expressions for the ECD correlation function. The expressions for 
the thermal conductivity are obtained in § 3. In § 4, we present the numerical results for 
ECD correlation function and the thermal conductivity. A comparison of our results with 
MD data and discussion of results are also given in § 4. 

2. Time evolution of the energy current density correlation function 

We define the ECD correlation function E(t )  as 

where J ; ( t )  is the ECD variable defined in the preceding paper. The time evolution of 
E(t)  is of fundamental importance in the study of the relaxation of heat current fluc- 
tuations and in determining the thermal conductivity of fluids. It can be expressed via 
the generalised Langevin equation 

+ lo' d t M I  ( t  - z )E(  t) = 0 

where M,( t )  is the first-order MF. If we define e(@) as the Fourier-Laplace transform of 
E( t )  according to 

E(o) = i lox exp(i u t )  E ( t )  d t  (3) 

equation (1) can be written as 

E ( 0 )  = - E( t  = O)/[w + n;r,(u)]. (4) 

In equation (4), h',(u) is the Fourier-Laplace transform of M,(t) .  The MFM,(~) and its 
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higher-order MF also satisfy equations similar to (2), the Fourier-Laplace transform of 
which can be written 

M n ( o )  = - M,(t = o) / [w  + M,+l(u)]  n = 1, 2 , .  . . . (5) 
Using equations (4) and (5), one can generate a continued-fraction representation of 
the ECD correlation function. In the above equations, E(t = 0) = 6o and M,(t = 0) = S,, 
n = 1 , 2 , .  . . , are called the damping matrices and are related to the frequency sum 
rules (Copley and Lovesey 1975). Here the first three 6n are known, which in fact makes 
the continued-fraction formalism useful. 

The frequency spectrumf(o) of the ECD correlation function is given by 

f (w)  = P ( w )  = 2 cos(wt) E(t)  d t  (6) il: 
where ,??‘(CL)) is the imaginary part of ,!?(U). The ECD correlation function E(t)  is obtained 
by taking the inverse transform which is given as 

1 ,-a 

E(t) = .f J cos(wt)f(o) d o .  ( 7 )  

In order to evaluate g(o) and hence E(t ) ,  it is necessary to truncate the hierarchy of 
the continued-fraction representation (5). Since higher-order MFS are mathematically 
complicated objects owing to the time evolution of fluctuating forces, one normally 
restricts the discussion to afirst- or second-stage MF. Therefore, we truncate the hierarchy 
of the continued-fraction representation at the first stage. This leads to the following 
expression for the frequency spectrum of the ECD correlation function: 

f ( w )  = 6 , M ; ( o ) / [ ( o  + M;(w))’  + M:”(w)] (8) 

where &I[ ( U )  and (0) are the real and imaginary parts of h?,(o). 
Although we have a precise mathematical expression for M,( t ) ,  its microscopic 

calculation is not simple. No attempt has been made so far to calculate the MF of the ECD 
correlation function from first principles. In this work, we confine ourselves to only 
phenomenological forms of the MF. We have found that a simple sech(at) MF has given 
very good results for self-diffusion coefficients (Tankeshwar et a1 1987) and the shear 
viscosity (Tankeshwar et a1 1988) over a wide range of densities and a wide range of 
temperatures. Therefore, we assume here also that 

M , ( t )  = 61 sech(V%,t). (9) 
It should be pointed out that the MF given by equation (9) behaves as exp( - 6,t2/2) for 
short times and as exp(-V%,t) for long times. The Fourier-Laplace transform of 
equation (9) is 

M l ( o )  = ~ ; ( o )  + iM;’(o) (10) 
where 

M ; ( w )  = (7dSI/2V%,) t a n h ( n ~ / 2 V % ~ )  

+ (i S ~ / ~ V ‘ ~ ~ ) { V [ ( V / ~ ,  + iw)/42/Z2] - ~j1[(2//8~ - i o ) / 4 V / 6 ~ )  (11) 

&‘;’(U) = (n~3~/22/T;,) sech(~~o/2V/6,)  (12) 

and 

where V ( x )  is the Euler ‘psi’ function defined as v(x) = d[ln r(x)]/dx and T ( x )  is the 
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gamma function. In the above equation, 6,,, a1 and a2 are related to the frequency sum 
rules of the ECD correlation function up to the fourth order. These are explicitly given 
as 

6 0  = Eo 

where Eo,  E2 and E4 are the zeroth-, second- and fourth-frequency sum rules of the ECD 
correlation function. The numerical results for these have already been obtained in the 
preceding paper. 

In order to see the effect of different forms of M , ( t ) ,  we assume a simple exponential 
form for the MF given as 

M,(t) = a1 exp(-6:/21t/). (14) 
It is easy to calculate the real and imaginary parts of its &fl(w). Substituting these in 
equation (8) and the subsequent f ( w )  in equation (7), one can obtain an analytical 
expression for the ECD correlation function. The steps of the calculation have been 
discussed by Denner and Wagner (1984). Therefore, we simply quote the final 
expression. The ECD correlation function is given by 

E([ )  = exp(-V%2f/2)[cos(oo6~/2t) + (1/2wo) ~in(w,-,6$’~t)] for < 4  (15) 

E(t)  = e ~ p ( - f i ~ t / 2 ) [ c o s h ( y 6 ~ ~ ~ t )  + (1/2y) ~ inh(y t j i /~ t ) ]  for 62/61 >4 (16) 
where 

WO = (6,/8* - 6 ) ” 2  y = (a - Sl/a2)*’2 

It is clear from equation (15) that E(t)  has an oscillating behaviour for &/a1 < 4. On 
the contrary, E(t) decreases monotonically with increasing time for 62/61 > 4. We 
calculate in § 4 the time evolution of the ECD correlation function for the sech(at) MF as 
well as for the exponential MF. 

3. Expressions for thermal conductivity 

The Green-Kubo formula for the thermal conductivity is given by 
“r 

1 
A=-J T/kBT2 E(t)  dt. 

Using equation (3) the above equation can alternatively be written as 

A = - (i/VkBT*)E(0). (18) 

Here, V is the volume of the system, and kB and T are the Boltzmann constant and 
temperature. For the model sech(at) of the MF, E(0)  is easily obtained from equations 
(1 1) , (12) and (4) and is given by 

E(o) = i ( 2 / 7 ~ ) ( 6 ~ 6 ~ / ~ / 6 , ) .  (19) 

Substituting the above equation into equation (18) and writing 6, in terms of the 
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frequency sum rules (equation (13)), we obtain the following expression for the thermal 
conductivity: 

= (2/n)(E?l/E2)(n/kB T2)(E4/E2 - E 2 / E O ) 1 ’ 2 .  (20) 
However, if we use Ml( t )  = a1 exp(-a2t2/2) and follow the above procedure, the 
expression for il is obtained to be 

= (2/n)’i2(n/kB T2)(Ei/E2)(E4/E2 - l!?2/E(3)1’2. (21) 
For the simple exponential MF M,(t) (equation (14)), the thermal conductivity is n/2 
times that in equation (20). 

Instead of assuming some phenomenological forms for Ml( t ) ,  J o s h  and Gray (1986) 
proposed an alternative procedure for truncating the continued fraction given by 
equations (4) and (5). In this method, one takes the geometric mean of two consecutive 
terms of the continued fraction. Following the same procedure (Tankeshwar eta1 1987), 
we obtain the following expression for the thermal conductivity: 

= (n/kB T2)(Ei’2/E2)(E4/E2 - E2/E(3)1’4. (22) 
It should be noted that the above three expressions (20), (21) and (22) involve the same 
number of frequency sum rules but the structure of equations (20) or (21) and (22) are 
quite different. 

4. Results and discussion 

We present here numerical results for the ECD correlation function and thermal con- 
ductivity of LJ fluids for several densities and temperatures. These are obtained using 
the results for the zeroth-, second- and fourth-frequency sum rules of the ECD correlation 
function obtained in the preceding paper. 

The time evolution of the ECD correlation function is calculated from equation (7) 
using equations (8), (1 1) and (12). The results are presented as full curves in figure 1 for 
six arbitrarily chosen thermodynamic states. The results for the exponential MF are 
obtained from the analytic expressions (15) or (16) and are also plotted in the same 
figure as broken curves. Very recent computer simulation data (Vogelsang et a1 1987) 
have been obtained for E(t ) ,  but only at the triple point. These are shown by the full 
circles in figure 1. It can easily be seen from the figure that the decrease in the ECD 
correlation function with increasing time obtained in the computer simulation data lies 
in between the results obtained from the sech(at) MF and the simple exponential MF. On 
the whole, the MD data are closer to the theoretical results obtained using the sech(at) 
MF. It has also been found that E(t)  decreases with increasing time more rapidly when 
the sech(at) MF is used than when the exponential MF is used. No significant back- 
scattering effects in E(t) have been found even at the triple point. This may be one of 
the important results of the present investigation. 

We now calculate the thermal conductivity using equations (20)-(22) and the numeri- 
cal values of the sum rules. The results for A* = il((2/kB)((M/&)1i2 are presented in 
figure 2 for four isotherms. Here CJ and E are the two parameters of the LJ potential, 
having dimensions of length and energy, respectively. In figure 2 the full, broken and 
chain curves are the results obtained from the sech(at) MF, the Gaussian MFand the model 
of J o s h  and Gray (1986) respectively. The MD data of Heyes (1984) are represented by 
the full circles. It can be seen from the figure that the results for the sech(at) MF and from 
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Figure 1. Variation in normalised ECD correlation function E(t") /E(O) with time tX = 
f(E/mo*)'~* obtained for six thermodynamic states: - , results obtained from equation 
(7 )  for a sech(af) MF; - - -, results from equation (15) or (16); 0, MD data. 

the model of Joslin and Gray (1986) overlap for three of the isotherms (T* = ( k B T / & )  = 
1.85, 2.5 and 3.5) for densities yl* = no3 less than 0.8. The results obtained using the 
Gaussian MF for T" = 1.23 and 1.85 are in overall good agreement with the MD results 
of Heyes. On the contrary, the results for A *  obtained for the sech(at) MF are found to 
be good for T* = 2.5 and 3.5. From this it can be concluded that the Gaussian and 
sech(at) model reproduce the MD data for the entire ranges of densities and temperatures 
investigated. A similar conclusion has also been drawn for the shear viscosity. From our 
earlier work (Tankeshwar et a1 1987,1988) as well as from the present work, it is found 
for LJ fluids that the thermal conductivity show a stronger temperature dependence than 
do the diffusion coefficients and shear viscosity. 

In order to see the importance of three-, four- and five-particle contributions in 
estimating the thermal conductivity, we calculate A from equations (20) and (21) includ- 
ing and not including the contributions to the frequency sum rules. These are denoted 
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Figure 2. Variation in the thermal conductivity A *  with density at various 
temperatures: - , results obtained from equation (20); - - -, results obtained from 
equation (21); - -, results obtained from equation (22); 0, MD data. 

as A;, A; , A; and AT. The subscripts 2 , 3 , 4  and 5 on A represent the contributions to 
frequency sum rules up to two, three, four and five particles, respectively. These results 
are presented in table 1. It can be seen from the table that the effect of the five-particles 
contribution on the thermal conductivity is almost always negligible. On the contrary, 
the three- and four-particle contributions are quite significant. For example, the triplet 
and the quadruplet contributions to the thermal conductivity are found to be up to 85 % 
and 16%, respectively, for the densities and temperatures investigated here. Further the 
triplet and the quadruplet contributions are insignificant at high temperatures as one 
would normally expect for the thermal conductivity of dilute systems. From the above, 
therefore, we conclude that the triplet correlation contribution plays an important role 
in estimating the thermal conductivity at and in the vicinity of the triple point (i.e. dense 
fluids). 

It is also noted from figure 1 that, for the density and the temperature corresponding 
to the triple point, the area under the MD curve for E(t)  is larger than the area under the 
theoretical E(t) curve obtained using the sech(at) MF. However, the theoretical thermal 
conductivity is larger than the MD value by about 15%. The absolute value of the thermal 
conductivity depends on the proportionality constant which in this case is the zeroth- 
frequency sum rule apart from the dimensional multiplying factor. Since our Eo is 
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Table 1. Values of the thermal conductivity A;, A:, A$ and A; obtained from equation (21) 
by including up to pair, triplet, quadruplet and pentuplet contributions, respectively. The 
values in parentheses represent the thermal conductivity obtained using the sech(at) MF 
whereas AGD represent the MD values of Heyes. 
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6.37 

1.67 

3.88 

5.24 

2.72 

5.36 

7.30 

2.20 

2.68 

4.09 

Experimental data of Hanley er al(1974). 
MD data of Vogelsang er a/ (1984). 

obtained using the superposition approximation for the triplet correlation function, we 
can say that the superposition approximation overestimates the triplet contribution. It 
should also be pointed out that the thermal conductivity obtained using the exponential 
MF is 57% larger than the value obtained using the sech(at) MF, implying a larger 
discrepancy with MD data. We also note that the initial values of the velocity and the 
stress autocorrelation function are exactly known, in contrast with the initial value of 
the ECD correlation function; the latter is known only approximately owing to the 
appearance of the triplet correlation function in its expression. 

The overall good result in this paper for the thermal conductivity, in fact, provides 
a posteriori justification for the use of the Gaussian or sech(at) forms of the MF. It is 
noted that any MF of the functional form 

M , ( t )  = 6 , F ( G , t )  

gives the following expression for the inverse thermal conductivity: 
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where F(x)  is an even function of x and we call the integral appearing in equation (24) 
the normalisation integral. For our models, F(x)  is exp(-x2/2) or sech(x). Hence 
equations (20) and (21) differ by a factor of only (n/2)l/,. From figure 2, it can be seen 
that both the MFS reproduce the density and temperature dependences of the thermal 
conductivity quite well. This implies that the density and temperature dependences of 
the normalisation integral are quite weak. This good agreement shows that the sech(at) 
or Gaussian form of the MF provides average behaviour of the relaxation processes in 
the fluids. 

It is of interest to know the dilute-gas limit of the thermal conductivity. To obtain 
this, we use the results obtained in the n + 0 limit of the frequency sum rules, namely 

E,-, = ~ ( ~ B T / ~ v ) ~ M ,  + O(n) 

E2 = An + O(n2)  

E4 = Bn + O(n2).  

Substituting these values of Eo,  E ,  and E4 into equation (20), we obtain 

A = (2/K>(1/k~ T 2 ) [ ? f ( k ~  T)3/M]2(B/A3)1’2 (28) 

where B and A are independent of density but depend on temperature. Equation (28) 
provides a finite A in the n -+ 0 limit. On the contrary, if we use the zeroth- and second- 
frequency sum rules of E(t) for estimating the thermal conductivity, i.e. assuming that 
E(t) = a0 exp(-dlt2/2), we obtain 

In the n+ 0 limit, equation (29) reduces to 

= (n/2)1’2(t21/2/kB T2)[(35/A)(k~ 35(kB T)4/8M (30) 

which tends to zero for n + 0. Further the results obtained from equation (29) are up to 
40% less than those obtained from equation (21). The above points and the good 
agreement of results obtained from equations (20) and (21) justify the choice Of MF and 
the truncation of the continued fraction at the first stage for the ECD correlation function. 
Our results are also suggestive of the small effect of the higher-frequency sum rules on 
thermal conductivity. 

In conclusion, we find that the sech(at) and Gaussian forms of the MF provide good 
agreement of the thermal conductivity with MD data over a wide range of densities and 
temperatures for LJ fluids. From our earlier work on diffusion coefficients (Tankeshwar 
et a1 1987) and shear viscosity (Tankeshwar et a1 1988) as well as from the present study 
of the thermal conductivity, we conclude that the Green-Kubo formula coupled with 
the continued-fraction representation of the correlation function, MF and frequency sum 
rules is a workable and successful approach for calculating the transport coefficient of 
fluids using only the inter-atomic potential as input. 
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